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A bad example: 7 is odd (or even?!)

...
−−−−−−−−−
11 is odd
−−−−−−−−−−
10 is even
−−−−−−−−−−
9 is odd
−−−−−−−−−
8 is even
−−−−−−−−−
7 is odd

...
−−−−−−−−−−
11 is even
−−−−−−−−−−
10 is odd
−−−−−−−−−
9 is even
−−−−−−−−−
8 is odd
−−−−−−−−−
7 is even

This sort of reasoning can be fallacious!
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A better example: natural numbers have parity

E(x) := ∃y.x = 2y
O(x) := ∃y.x = 2y + 1

=========

⇒ E(0)
−−−−−−−−−−−−−−−−−
⇒ E(0) ∨ O(0)

−−−−−−−−−−−−−−−−−−−−−−−−−
x = 0⇒ E(x) ∨ O(x)

...
−−−−−−−−−−−−−−−−− •
⇒ E(y) ∨ O(y)

====================

E(y)⇒ O(y + 1)
====================

O(y)⇒ E(y + 1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⇒ E(y + 1) ∨ O(y + 1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x = y + 1⇒ E(x) ∨ O(y)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− •
⇒ E(x) ∨ O(x)

−−−−−−−−−−−−−−−−−−−−−−−
⇒ ∀x.(E(x) ∨ O(x))
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Irrationality of
√

2 via infinite descent

−−−−−−−−−−−−−−−
⇒ 2 is prime

...
−−−−−−−−−−−−− •
b2 = 2c2 ⇒

−−−−−−−−−−−−−−−−−−−−−
c < a, 4c2 = 2b2 ⇒

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∃x < a.a = 2x, a2 = 2b2 ⇒

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− •
a2 = 2b2 ⇒

−−−−−−−−−−−−−−−−−−−−
⇒ ∀x, y. x2 6= 2y2

• Apparently non-wellfounded reasoning.
• Why is it sound?
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Cyclic proofs

• Proof theory for FOL with inductive defintions.
• (Automated) proofs of program termination in separation logic.
• Proof systems for the modal µ-calculus.
• Metalogical results, like interpolation.
• Proof search procedures.
• . . .

A motivating abstract question:

Question (Brotherston-Simpson conjecture)
Are inductive proofs and cyclic proofs equally powerful?

This talk is about the special case of first-order arithmetic.
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Outline

1 Peano and Cyclic Arithmetic

2 Summary of previous work and contributions

3 From induction to cycles

4 From cycles to induction

5 Some further results

6 Conclusions
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A sequent calculus presentation of PA

Peano Arithmetic, written PA, can be specified by a deduction system as follows:

• ∆0-initial sequents for the instances of Q: defining properties of 0, s,+,×, <.
• An induction rule:

Γ⇒ ∆, A(0) Γ, A(a)⇒ ∆, A(sa)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ ∆, A(t)

• We include an explicit substitution rule for unifying sequents in cycles:

Γ⇒ ∆
θ-sub −−−−−−−−−−−−−−−−

θ(Γ)⇒ θ(∆)

Definition
IΦ is the fragment of PA where induction is restricted to formulae A ∈ Φ. In
particular IΣn has induction only on formulae ∃x1.∀x2. . . . .Qxn.A, with A recursive.
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Some proof theory of arithmetic

Proposition (Folklore)
For n ≥ 0 we have that IΣn = IΠn.

Theorem ((Free-)cut elimination)
If PA ` S(~a), then there is a sequent proof π of S(~a) containing only subformulae of S(~a), an
induction formula of π or an initial sequent of π.

Corollary
For n ≥ 0, if IΣn+1 ` ∀~x.ϕ(~x), forϕ ∈ Σn, then⇒ ϕ(~a) has a sequent proof containing
only Σn formulae.
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Non-wellfounded arithmetic (Simpson ’12)

Definition (Precursors and traces)
A preproof is a locally correct infinite derivation tree. Let (Si)i be an infinite branch
of a preproof. We say t′ is a precursor of t at i if:

• Si concludes a θ-sub step and t = θ(t′); or
• Si concludes any other step and t′ is t; or
• Si concludes any other step and t = t′ occurs in the antecedent of Si.

A trace along an infinite branch (Si)i is a sequence (ti)i≥n such that:

1 ti is a a precursor of ti+1; or

2 ti+1 < ti occurs in the antecedent of Si. (a ‘progress point’)

Definition (∞-proofs)
A∞-proof (or just ‘proof’) is a preproof where each infinite branch has an infinitely
progressing trace.
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Soundness of ∞-proofs

Theorem (folklore)
If A has a∞-proof, then N � A.

Proof idea.

• Suppose otherwise, and build a branch of invalid sequents (Si)i.
• Simultaneously build assignments ρi witnessing the invalidity.
• By definition, there is an infinitely progressing trace (ti)i≥n along (Si)i.
• Can induce an infinite descending sequence ρi1 (ti1 ) > ρi2 (ti2 ) > · · ·
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A finitary fragment: the cyclic proofs

Definition
A cyclic proof is a∞-proof with only finitely many distinct subtrees. CA is the
theory of sentences that have cyclic proofs.

Proposition (folklore)
We can effectively check if a finite graph is a correct cyclic proof.

Proof.
Let π be a regular preproof. Define:

• Aπb a (deterministic) Büchi automaton recognising infinite branches of π.
• Aπt a NBA recognising branches of π with an infinitely progressing trace.

Now simply check ifL(Aπb ) ⊆ L(Aπt ).

NB: inclusion of Büchi automata is PSPACE-complete.
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Previous work

Theorem (Simpson ’11)
CA = PA.

• Formalises soundness argument for∞-proofs in an appropriate fragment of
SO arithmetic (ACA0).

• (Basic automaton theory for ω-languages, can be carried out in ACA0.)
• The result for PA is obtained by conservativity of ACA0 over PA.
• Possibly non-elementary blowup in proof size, due to non-uniformity.

Theorem (Implicit in Berardi & Tatsuta ’17)
CA + I = PA + I for any set of Martin-Löf ordinary inductive definitions I and their
associated rules.

• ‘Structural’ argument, relying on proof-level manipulations.
• Relies on some nontrivial infinitary combinatorics specialised to arithmetic.
• High logical complexity.
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Some questions

Definition
Write CΣn for the theory axiomatised by the universal closures of CA proofs
containing only Σn-formulae.

NB: A CΣn proof of a Σn sequent will contain only Σn formulae anyway, by free-cut
elimination.

Question (Simpson ’17)

1 How does the logical complexity of CA and PA compare?
Does CΣm = IΣn for appropriately chosen m, n?

2 How does the proof complexity of PA and CA compare?

3 Does cut-admissibility hold for any non-trivial fragment of CA?
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Digression: calibrating intuitions

It is tempting to think that IΣn = CΣn. However this is not the case:

Example (Simpson ’17)
Recall the Ackermann-Péter function:

A(x, y) =


y + 1 x = 0
A(x − 1, 1, z) x > 0, y = 0
A(x − 1, A(x, y− 1)) x, y > 0

Let A(x, y, z) be an appropriate Σ1 formula computing its graph. We have:
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Duality for free

On the other hand, some intuitions have simple proofs:

Proposition
For n ≥ 0, CΣn = CΠn.

Proof.
Simply replace every sequent~p,Γ⇒ ∆ with~p, Γ̄⇒ ∆̄, where~p exhausts all atomic
formulae in the antecedent.
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Summary of contribution

Theorem
CΣn = IΣn+1, over Πn+1 theorems.

⊇: by structural methods manipulating normal forms of inductive proofs.

⊆: soundness argument can be formalised in conservative SO extensions.

Theorem
PA and CA proof size differs only elementarily.

Proof idea.
Soundness argument can be made uniform in PA. Relies on:

• Deterministic acceptance of branch automaton is arithmetical.
• Well-foundedness of only finite ordinals is needed for the argument.
•  arithmetical approximation of non-deterministic acceptance.
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Main lemma

Lemma
Let π be a IΠn+1 proof, containing only Πn+1 formulae, of

Γ,∀x1.A1, . . . , ∀xl.Al ⇒ ∆,∀y1.B1, . . . , ∀ym.Bm (?)

where Γ,∆, Ai,Bj are Σn and~x,~y occur only in~A, ~B respectively.

Then there is a CΣn derivation dπe of the form:

{Γ ⇒ ∆, Ai}i≤l

⌈π⌉

Γ ⇒ ∆, B1, . . . , Bm

Moreover, no free variables of (?) occur as eigenvariables in dπe.

20 / 30



Main lemma

Lemma
Let π be a IΠn+1 proof, containing only Πn+1 formulae, of

Γ,∀x1.A1, . . . , ∀xl.Al ⇒ ∆, ∀y1.B1, . . . , ∀ym.Bm (?)

where Γ,∆, Ai,Bj are Σn and~x,~y occur only in~A, ~B respectively.

Then there is a CΣn derivation dπe of the form:

{Γ ⇒ ∆, Ai}i≤l

⌈π⌉

Γ ⇒ ∆, B1, . . . , Bm

Moreover, no free variables of (?) occur as eigenvariables in dπe.

20 / 30



Main lemma

Lemma
Let π be a IΠn+1 proof, containing only Πn+1 formulae, of

Γ,∀x1.A1, . . . , ∀xl.Al ⇒ ∆, ∀y1.B1, . . . , ∀ym.Bm (?)

where Γ,∆, Ai,Bj are Σn and~x,~y occur only in~A, ~B respectively.

Then there is a CΣn derivation dπe of the form:

{Γ ⇒ ∆, Ai}i≤l

⌈π⌉

Γ ⇒ ∆, B1, . . . , Bm

Moreover, no free variables of (?) occur as eigenvariables in dπe.

20 / 30



Translation of an induction step to a cyclic proof, idea

If π extends proofs π0, π
′ by an induction step,

Γ, ∀~x.~A⇒ ∆, ∀~y.~B,∀z.C(0) Γ, ∀~x.~A,∀z.C(c)⇒ ∆, ∀~y.~B, ∀z.C(sc)
ind −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, ∀~x.~A⇒ ∆, ∀~y.~B,∀x.C(t)

we define dπe to be the following cyclic proof:

{Γ ⇒ ∆, Ai}i≤l

⌈π0⌉

Γ ⇒ ∆, ~B,A(0)
= −−−−−−−−−−−−−−−−−−−−−−−−−−

b = 0,Γ ⇒ ∆, ~B,C(d)

−−−−−−−−−−−−−−−−−− •
Γ ⇒ ∆, ~B,C(d)

sub −−−−−−−−−−−−−−−−−−

Γ ⇒ ∆, ~B,C(c) {Γ ⇒ ∆, Ai}i≤l

⌈π′⌉, ~B

c < d,Γ ⇒ ∆, ~B,C(sc)
−−−−−−−−−−−−−−−−−−−−−−−−−−−

d = sc,Γ ⇒ ∆, ~B,C(d)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− •

Γ ⇒ ∆, ~B,C(d)
sub −−−−−−−−−−−−−−−−−−

Γ ⇒ ∆, ~B,C(t)
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Reverse mathematics of ω-word automata

Reason about infinite words/sets in conservative SO extensions of FO arithmetic.

RCA0 ≈ IΣ1 ≈ primitive recursive arithmetic

For an appropriate formalisation of NBA complementation, we have:

Theorem (Kolodziejczyk, Michalewski, Pradic & Skrzypczak ’16)

RCA0 + Σ0
2 -IND ` ∀NBAA. ∀X. (X ∈ L(Ac) ≡ X /∈ L(A)) (1)

Moreover, for each NBAA, we have:

RCA0 ` ∀X. (X ∈ L(Ac) ≡ X /∈ L(A)) (2)

NB: (2) is implicit in that work. It is not trivial!
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From cycles to induction

Write ArAcc(X,A2) for:

“eventually, there are runs of X onA2 hitting final states arbitrarily often”

Theorem
IΣ1(X) + “A2 has a complement” proves:

∀DBAA1.(“A1 ⊆ A2” ∧ X ∈ L(A1)) ⊃ ArAcc(X,A2)

• X ∈ L(A1) is arithmetical due to determinism.
• (Emptiness, unions and intersections of NBA formalisable in RCA0.)

The soundness argument of CΣn constructs a ∆n+1-definable invalid branch, so:

Corollary

1 PA elementarily simulates CA.

2 IΣn+1 ⊇ CΣn.
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Computational aspects of CA

Provably recursive functions of C∆0

• For n ≥ 1, the provably recursive functions of CΣn are just those of IΣn+1.

• However C∆0 is Π1-axiomatised, so by Parikh’s theorem we have:

Corollary
The provably recursive functions of C∆0 are just those of I∆0, i.e. the linear-time hierarchy.

Failure of cut-admissibility

Corollary
For n ≥ 1, the class of CA proofs with only Σn−1 cuts is not complete for CΣn.

Proof.

• IΣn+1 ` ConIΣn so CΣn ` ConIΣn by Πn+1-conservativity.
• On the other hand, CΣn−1 0 ConIΣn since otherwise IΣn ` ConIΣn .
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Metalogical aspects of CA

Reflection and consistency

Rephrasing our results in terms of logical strength, we have:

Corollary
For n ≥ 0, IΣn+2 ` Πn+1-RfnCΣn . In particular we have IΣn+2 ` ConCΣn .

Incompleteness
Unsurprisingly, we have Gödel incompleteness for all fragments CΣn.

In particular, we have:

Corollary
For n ≥ 0, IΣn+1 0 ConCΣn .

Proof.
Otherwise CΣn ` ConCΣn by Πn+1-conservativity.
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Reverse mathematics of McNaughton’s theorem

In fact, there is a curious consequence for ω-automaton theory.

Theorem
A natural formulation of McNaughton’s theorem, that every NBA has an equivalent
deterministic parity automaton, is not provable in RCA0.

Proof idea.

• IfA1 is a DBA, we can checkL(A1) ⊆ L(A2) by complementingA1 in RCA0

and checking for universality ofAc
1 ∪ A2.

• (Given McNaughton, we may check universality already in RCA0).
• This allows us to formalise, say, the soundness of C∆0 already in IΣ1,

contradicting Gödel’s second incompletess result for C∆0.

This was not known before!
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Summary and open questions

Optimal logical complexity result. In fact:

Corollary
CΣn is precisley the Πn+1 consequences of IΣn+1.

Proof complexity differs only elementarily. In fact:

Corollary
PA exponentially simulates CA. This is optimal, unless there is a more efficient way to check
cyclic proof soundness.

Question
What is the logical strength of McNaughton’s theorem, in general?

Question
What about computational interpretations and constructivity?

Thank you.
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