# On circular reasoning and proof theory 

Anupam Das ${ }^{1}$<br>University of Copenhagen<br>Logic Seminar<br>Melbourne, $19^{\text {th }}$ December 2018

${ }^{1}$ Supported by a Marie Skłodowska-Curie fellowship, ERC project 753431.

A bad example: 7 is odd (or even?!)
$\frac{\frac{\vdots}{11 \text { is odd }}}{\frac{10 \text { is even }}{\frac{9 \text { is odd }}{8 \text { is even }}} \frac{7 \text { is odd }}{}}$

## A bad example: 7 is odd (or even?!)

| $\frac{\vdots}{\frac{11 \text { is odd }}{10 \text { is even }}}$ | $\frac{\vdots}{\frac{9 \text { is odd }}{\frac{8 \text { is even }}{7 \text { is odd }}}}$ |
| :---: | :---: |$\frac{\frac{11 \text { is oden }}{\frac{9 \text { is even }}{\frac{8 \text { is odd }}{7 \text { is even }}}}}{}$

This sort of reasoning can be fallacious!

## A better example: natural numbers have parity

$$
\begin{aligned}
& E(x):=\exists y \cdot x=2 y \\
& O(x):=\exists y \cdot x=2 y+1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\overline{\overline{\Rightarrow E(0)}}}{\frac{\vdots}{\Rightarrow E(0) \vee O(0)}} \frac{\vdots}{\Rightarrow E(y) \vee O(y)} \bullet \\
& \begin{aligned}
\overline{x=0 \Rightarrow E(x) \vee O(x) \Rightarrow O(y+1)} & \overline{\overline{O(y) \Rightarrow E(y+1)}} \\
& \frac{\Rightarrow E(y+1) \vee O(y+1)}{x=y+1 \Rightarrow E(x) \vee O(y)}
\end{aligned} \\
& \frac{\Rightarrow E(x) \vee O(x)}{\Rightarrow \forall x \cdot(E(x) \vee O(x))}
\end{aligned}
$$

Irrationality of $\sqrt{2}$ via infinite descent

$$
\begin{gathered}
\frac{\frac{\vdots}{b^{2}=2 c^{2} \Rightarrow}}{\Rightarrow 2 \text { is prime }} \frac{\begin{array}{c}
c<a, 4 c^{2}=2 b^{2} \Rightarrow \\
\exists x<a \cdot a=2 x, a^{2}=2 b^{2} \Rightarrow
\end{array}}{\frac{a^{2}=2 b^{2} \Rightarrow}{\Rightarrow \forall x, y \cdot x^{2} \neq 2 y^{2}}} \text { • }
\end{gathered}
$$

## Irrationality of $\sqrt{2}$ via infinite descent

$$
\begin{gathered}
\frac{\frac{\vdots}{b^{2}=2 c^{2} \Rightarrow}}{\Rightarrow 2 \text { is prime }} \frac{\begin{array}{c}
c<a, 4 c^{2}=2 b^{2} \Rightarrow \\
\exists x<a \cdot a=2 x, a^{2}=2 b^{2} \Rightarrow
\end{array}}{\frac{a^{2}=2 b^{2} \Rightarrow}{\Rightarrow \forall x, y \cdot x^{2} \neq 2 y^{2}}} \text { • }
\end{gathered}
$$

- Apparently non-wellfounded reasoning.
- Why is it sound?


## Cyclic proofs

## Cyclic proofs

- Proof theory for FOL with inductive defintions.
- (Automated) proofs of program termination in separation logic.
- Proof systems for the modal $\mu$-calculus.
- Metalogical results, like interpolation.
- Proof search procedures.
- ...


## Cyclic proofs

- Proof theory for FOL with inductive defintions.
- (Automated) proofs of program termination in separation logic.
- Proof systems for the modal $\mu$-calculus.
- Metalogical results, like interpolation.
- Proof search procedures.
- ...

A motivating abstract question:
Question (Brotherston-Simpson conjecture)
Are inductive proofs and cyclic proofs equally powerful?

## Cyclic proofs

- Proof theory for FOL with inductive defintions.
- (Automated) proofs of program termination in separation logic.
- Proof systems for the modal $\mu$-calculus.
- Metalogical results, like interpolation.
- Proof search procedures.
- ...

A motivating abstract question:
Question (Brotherston-Simpson conjecture)
Are inductive proofs and cyclic proofs equally powerful?
This talk is about the special case of first-order arithmetic.

## Outline

(1) Peano and Cyclic Arithmetic
(2) Summary of previous work and contributions
(3) From induction to cycles
(4) From cycles to induction
(5) Some further results
(6) Conclusions

A sequent calculus presentation of PA

## A sequent calculus presentation of PA

Peano Arithmetic, written PA, can be specified by a deduction system as follows:

- $\Delta_{0}$-initial sequents for the instances of Q : defining properties of $0, \mathrm{~s},+, \times,<$.
- An induction rule:

$$
\frac{\Gamma \Rightarrow \Delta, A(0) \quad \Gamma, A(a) \Rightarrow \Delta, A(\mathrm{~s} a)}{\Gamma \Rightarrow \Delta, A(t)}
$$

## A sequent calculus presentation of PA

Peano Arithmetic, written PA, can be specified by a deduction system as follows:

- $\Delta_{0}$-initial sequents for the instances of Q: defining properties of $0, s,+, \times,<$.
- An induction rule:

$$
\frac{\Gamma \Rightarrow \Delta, A(0) \quad \Gamma, A(a) \Rightarrow \Delta, A(\mathrm{~s} a)}{\Gamma \Rightarrow \Delta, A(t)}
$$

- We include an explicit substitution rule for unifying sequents in cycles:

$$
\theta-\text { sub } \frac{\Gamma \Rightarrow \Delta}{\theta(\Gamma) \Rightarrow \theta(\Delta)}
$$

## A sequent calculus presentation of PA

Peano Arithmetic, written PA, can be specified by a deduction system as follows:

- $\Delta_{0}$-initial sequents for the instances of Q: defining properties of $0, \mathrm{~s},+, \times,<$.
- An induction rule:

$$
\frac{\Gamma \Rightarrow \Delta, A(0) \quad \Gamma, A(a) \Rightarrow \Delta, A(\mathrm{~s} a)}{\Gamma \Rightarrow \Delta, A(t)}
$$

- We include an explicit substitution rule for unifying sequents in cycles:

$$
\theta-\operatorname{sub} \frac{\Gamma \Rightarrow \Delta}{\theta(\Gamma) \Rightarrow \theta(\Delta)}
$$

Definition
$I \Phi$ is the fragment of PA where induction is restricted to formulae $A \in \Phi$. In particular $I \Sigma_{n}$ has induction only on formulae $\exists x_{1} . \forall x_{2} \ldots \ldots$. $Q x_{n} . A$, with $A$ recursive.

## Some proof theory of arithmetic

Proposition (Folklore)
For $n \geq 0$ we have that $I \Sigma_{n}=I \Pi_{n}$.

## Some proof theory of arithmetic

## Proposition (Folklore)

For $n \geq 0$ we have that $I \Sigma_{n}=I \Pi_{n}$.

Theorem ((Free-)cut elimination)
IfPA $\vdash S(\vec{a})$, then there is a sequent proof $\pi$ of $S(\vec{a})$ containing only subformulae of $S(\vec{a})$, an induction formula of $\pi$ or an initial sequent of $\pi$.

## Some proof theory of arithmetic

Proposition (Folklore)
For $n \geq 0$ we have that $I \Sigma_{n}=I \Pi_{n}$.
Theorem ((Free-)cut elimination)
IfPA $\vdash S(\vec{a})$, then there is a sequent proof $\pi$ of $S(\vec{a})$ containing only subformulae of $S(\vec{a})$, an induction formula of $\pi$ or an initial sequent of $\pi$.

Corollary
For $n \geq 0$, if $I \Sigma_{n+1} \vdash \forall \vec{x} . \varphi(\vec{x})$, for $\varphi \in \Sigma_{n}$, then $\Rightarrow \varphi(\vec{a})$ has a sequent proof containing only $\Sigma_{n}$ formulae.

Non-wellfounded arithmetic (Simpson '12)

Non-wellfounded arithmetic (Simpson '12)

Definition (Precursors and traces)
A preproof is a locally correct infinite derivation tree.

## Non-wellfounded arithmetic (Simpson '12)

Definition (Precursors and traces)
A preproof is a locally correct infinite derivation tree. Let $\left(S_{i}\right)_{i}$ be an infinite branch of a preproof. We say $t^{\prime}$ is a precursor of $t$ at $i$ if:

- $S_{i}$ concludes a $\theta$-sub step and $t=\theta\left(t^{\prime}\right)$; or
- $S_{i}$ concludes any other step and $t^{\prime}$ is $t$; or
- $S_{i}$ concludes any other step and $t=t^{\prime}$ occurs in the antecedent of $S_{i}$.


## Non-wellfounded arithmetic (Simpson '12)

Definition (Precursors and traces)
A preproof is a locally correct infinite derivation tree. Let $\left(S_{i}\right)_{i}$ be an infinite branch of a preproof. We say $t^{\prime}$ is a precursor of $t$ at $i$ if:

- $S_{i}$ concludes a $\theta$-sub step and $t=\theta\left(t^{\prime}\right)$; or
- $S_{i}$ concludes any other step and $t^{\prime}$ is $t$; or
- $S_{i}$ concludes any other step and $t=t^{\prime}$ occurs in the antecedent of $S_{i}$.

A trace along an infinite branch $\left(S_{i}\right)_{i}$ is a sequence $\left(t_{i}\right)_{i \geq n}$ such that:
(1) $t_{i}$ is a a precursor of $t_{i+1}$; or
(2) $t_{i+1}<t_{i}$ occurs in the antecedent of $S_{i}$. (a 'progress point')

## Non-wellfounded arithmetic (Simpson '12)

Definition (Precursors and traces)
A preproof is a locally correct infinite derivation tree. Let $\left(S_{i}\right)_{i}$ be an infinite branch of a preproof. We say $t^{\prime}$ is a precursor of $t$ at $i$ if:

- $S_{i}$ concludes a $\theta$-sub step and $t=\theta\left(t^{\prime}\right)$; or
- $S_{i}$ concludes any other step and $t^{\prime}$ is $t$; or
- $S_{i}$ concludes any other step and $t=t^{\prime}$ occurs in the antecedent of $S_{i}$.

A trace along an infinite branch $\left(S_{i}\right)_{i}$ is a sequence $\left(t_{i}\right)_{i \geq n}$ such that:
(1) $t_{i}$ is a a precursor of $t_{i+1}$; or
(2) $t_{i+1}<t_{i}$ occurs in the antecedent of $S_{i}$. (a 'progress point')

Definition ( $\infty$-proofs)
A $\infty$-proof (or just 'proof) is a preproof where each infinite branch has an infinitely progressing trace.

Irrationality of $\sqrt{2}$ again


## Irrationality of $\sqrt{2}$ again



There is an infinitely progressing trace $(a, c, b)^{\omega}$.

## Soundness of $\infty$-proofs

Theorem (folklore)
If A has a $\infty$-proof, then $\mathbb{N} \vDash A$.

## Soundness of $\infty$-proofs

Theorem (folklore)
If A has a $\infty$-proof, then $\mathbb{N} \vDash A$.
Proof idea.

- Suppose otherwise, and build a branch of invalid sequents $\left(S_{i}\right)_{i}$.
- Simultaneously build assignments $\rho_{i}$ witnessing the invalidity.


## Soundness of $\infty$-proofs

Theorem (folklore)
If A has a $\infty$-proof, then $\mathbb{N} \vDash A$.
Proof idea.

- Suppose otherwise, and build a branch of invalid sequents $\left(S_{i}\right)_{i}$.
- Simultaneously build assignments $\rho_{i}$ witnessing the invalidity.
- By definition, there is an infinitely progressing trace $\left(t_{i}\right)_{i \geq n}$ along $\left(S_{i}\right)_{i}$.
- Can induce an infinite descending sequence $\rho_{i_{1}}\left(t_{i_{1}}\right)>\rho_{i_{2}}\left(t_{i_{2}}\right)>\cdots$

A finitary fragment: the cyclic proofs

A finitary fragment: the cyclic proofs

[^0]
## A finitary fragment: the cyclic proofs

## Definition

A cyclic proof is a $\infty$-proof with only finitely many distinct subtrees. CA is the theory of sentences that have cyclic proofs.

Proposition (folklore)
We can effectively check if a finite graph is a correct cyclic proof.

## A finitary fragment: the cyclic proofs

## Definition

A cyclic proof is a $\infty$-proof with only finitely many distinct subtrees. CA is the theory of sentences that have cyclic proofs.

Proposition (folklore)
We can effectively check if a finite graph is a correct cyclic proof.
Proof.
Let $\pi$ be a regular preproof. Define:

- $\mathcal{A}_{b}^{\pi}$ a (deterministic) Büchi automaton recognising infinite branches of $\pi$.
- $\mathcal{A}_{t}^{\pi}$ a NBA recognising branches of $\pi$ with an infinitely progressing trace.

Now simply check if $\mathcal{L}\left(\mathcal{A}_{b}^{\pi}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{t}^{\pi}\right)$.

## A finitary fragment: the cyclic proofs

## Definition

A cyclic proof is a $\infty$-proof with only finitely many distinct subtrees. CA is the theory of sentences that have cyclic proofs.

Proposition (folklore)
We can effectively check if a finite graph is a correct cyclic proof.
Proof.
Let $\pi$ be a regular preproof. Define:

- $\mathcal{A}_{b}^{\pi}$ a (deterministic) Büchi automaton recognising infinite branches of $\pi$.
- $\mathcal{A}_{t}^{\pi}$ a NBA recognising branches of $\pi$ with an infinitely progressing trace.

Now simply check if $\mathcal{L}\left(\mathcal{A}_{b}^{\pi}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{t}^{\pi}\right)$.
NB: inclusion of Büchi automata is PSPACE-complete.

## Outline

(1) Peano and Cyclic Arithmetic

2 Summary of previous work and contributions
(3) From induction to cycles
(4) From cycles to induction
(5) Some further results
(6) Conclusions

## Previous work

## Previous work

Theorem (Simpson '11)
$C A=P A$.

## Previous work

Theorem (Simpson '11)
$C A=P A$.

- Formalises soundness argument for $\infty$-proofs in an appropriate fragment of SO arithmetic ( $\mathrm{ACA}_{0}$ ).
- (Basic automaton theory for $\omega$-languages, can be carried out in $\mathrm{ACA}_{\circ}$.)


## Previous work

Theorem (Simpson '11)
$C A=P A$.

- Formalises soundness argument for $\infty$-proofs in an appropriate fragment of SO arithmetic ( $\mathrm{ACA}_{0}$ ).
- (Basic automaton theory for $\omega$-languages, can be carried out in ACA ${ }_{\circ}$.)
- The result for PA is obtained by conservativity of $\mathrm{ACA}_{\circ}$ over PA.


## Previous work

Theorem (Simpson '11)
$C A=P A$.

- Formalises soundness argument for $\infty$-proofs in an appropriate fragment of SO arithmetic ( $\mathrm{ACA}_{0}$ ).
- (Basic automaton theory for $\omega$-languages, can be carried out in $A C A_{0}$.)
- The result for PA is obtained by conservativity of ACA $_{\circ}$ over PA.
- Possibly non-elementary blowup in proof size, due to non-uniformity.


## Previous work

Theorem (Simpson '11)
$C A=P A$.

- Formalises soundness argument for $\infty$-proofs in an appropriate fragment of SO arithmetic ( $\mathrm{ACA}_{0}$ ).
- (Basic automaton theory for $\omega$-languages, can be carried out in $A C A_{\circ}$.)
- The result for PA is obtained by conservativity of ACA $_{\circ}$ over PA.
- Possibly non-elementary blowup in proof size, due to non-uniformity.

Theorem (Implicit in Berardi \& Tatsuta '17)
$\mathrm{CA}+\mathcal{I}=\mathrm{PA}+\mathcal{I}$ for any set of Martin-Löf ordinary inductive definitions $\mathcal{I}$ and their associated rules.

- 'Structural' argument, relying on proof-level manipulations.


## Previous work

Theorem (Simpson '11)
$C A=P A$.

- Formalises soundness argument for $\infty$-proofs in an appropriate fragment of SO arithmetic ( $\mathrm{ACA}_{0}$ ).
- (Basic automaton theory for $\omega$-languages, can be carried out in $\mathrm{ACA}_{0}$.)
- The result for PA is obtained by conservativity of ACA $_{\circ}$ over PA.
- Possibly non-elementary blowup in proof size, due to non-uniformity.

Theorem (Implicit in Berardi \& Tatsuta '17)
$\mathrm{CA}+\mathcal{I}=\mathrm{PA}+\mathcal{I}$ for any set of Martin-Löf ordinary inductive definitions $\mathcal{I}$ and their associated rules.

- 'Structural' argument, relying on proof-level manipulations.
- Relies on some nontrivial infinitary combinatorics specialised to arithmetic.


## Previous work

Theorem (Simpson '11)
$C A=P A$.

- Formalises soundness argument for $\infty$-proofs in an appropriate fragment of SO arithmetic ( $\mathrm{ACA}_{0}$ ).
- (Basic automaton theory for $\omega$-languages, can be carried out in $\mathrm{ACA}_{0}$.)
- The result for PA is obtained by conservativity of ACA $_{\circ}$ over PA.
- Possibly non-elementary blowup in proof size, due to non-uniformity.

Theorem (Implicit in Berardi \& Tatsuta '17)
$\mathrm{CA}+\mathcal{I}=\mathrm{PA}+\mathcal{I}$ for any set of Martin-Löfordinary inductive definitions $\mathcal{I}$ and their associated rules.

- 'Structural' argument, relying on proof-level manipulations.
- Relies on some nontrivial infinitary combinatorics specialised to arithmetic.
- High logical complexity.


## Some questions

## Definition

Write $C \Sigma_{n}$ for the theory axiomatised by the universal closures of CA proofs containing only $\Sigma_{n}$-formulae.

NB: A $C \Sigma_{n}$ proof of a $\Sigma_{n}$ sequent will contain only $\Sigma_{n}$ formulae anyway, by free-cut elimination.

## Some questions

## Definition

Write $C \Sigma_{n}$ for the theory axiomatised by the universal closures of CA proofs containing only $\Sigma_{n}$-formulae.

NB: A $C \Sigma_{n}$ proof of a $\Sigma_{n}$ sequent will contain only $\Sigma_{n}$ formulae anyway, by free-cut elimination.

Question (Simpson '17)
(1) How does the logical complexity of CA and PA compare? Does $C \Sigma_{m}=I \Sigma_{n}$ for appropriately chosen $m, n$ ?

## Some questions

## Definition

Write $C \Sigma_{n}$ for the theory axiomatised by the universal closures of CA proofs containing only $\Sigma_{n}$-formulae.

NB: A $C \Sigma_{n}$ proof of a $\Sigma_{n}$ sequent will contain only $\Sigma_{n}$ formulae anyway, by free-cut elimination.

Question (Simpson'17)
(1) How does the logical complexity of CA and PA compare? Does $C \Sigma_{m}=I \Sigma_{n}$ for appropriately chosen $m, n$ ?
(2) How does the proof complexity of PA and CA compare?

## Some questions

## Definition

Write $C \Sigma_{n}$ for the theory axiomatised by the universal closures of CA proofs containing only $\Sigma_{n}$-formulae.

NB: A $C \Sigma_{n}$ proof of a $\Sigma_{n}$ sequent will contain only $\Sigma_{n}$ formulae anyway, by free-cut elimination.

Question (Simpson'17)
(1) How does the logical complexity of CA and PA compare? Does $C \Sigma_{m}=I \Sigma_{n}$ for appropriately chosen $m, n$ ?
(2) How does the proof complexity of PA and CA compare?
(3) Does cut-admissibility hold for any non-trivial fragment of CA?

## Digression: calibrating intuitions

## Digression: calibrating intuitions

It is tempting to think that $I \Sigma_{n}=C \Sigma_{n}$.

## Digression: calibrating intuitions

It is tempting to think that $I \Sigma_{n}=C \Sigma_{n}$. However this is not the case:

## Example (Simpson '17)

Recall the Ackermann-Péter function:

$$
A(x, y)= \begin{cases}y+1 & x=0 \\ A(x-1,1, z) & x>0, y=0 \\ A(x-1, A(x, y-1)) & x, y>0\end{cases}
$$

Let $A(x, y, z)$ be an appropriate $\Sigma_{1}$ formula computing its graph.

## Digression: calibrating intuitions

It is tempting to think that $I \Sigma_{n}=C \Sigma_{n}$. However this is not the case:

## Example (Simpson '17)

Recall the Ackermann-Péter function:

$$
A(x, y)= \begin{cases}y+1 & x=0 \\ A(x-1,1, z) & x>0, y=0 \\ A(x-1, A(x, y-1)) & x, y>0\end{cases}
$$

Let $A(x, y, z)$ be an appropriate $\Sigma_{1}$ formula computing its graph. We have:

$$
\begin{aligned}
& \frac{\vdots}{x=0 \Rightarrow A(x, y, y+1)} \frac{\stackrel{(A)}{\Rightarrow} \exists z \cdot A(x-1,1, z)}{\frac{x>0, y=0 \Rightarrow \exists z \cdot A(x, y, z)}{\Rightarrow} \frac{(B)}{\Rightarrow} \exists z \cdot A(x, y-1, z) \quad \stackrel{(C)}{\Rightarrow} \exists z \cdot A\left(x-1, y^{\prime}, z\right)} \\
& \hline x>0 \Rightarrow \exists z, y^{\prime} \cdot A\left(x, y-1, y^{\prime}\right) \wedge A\left(x-1, y^{\prime}, z\right) \\
& x, y>0 \Rightarrow \exists z \cdot A(x, y, z)
\end{aligned}
$$

## Duality for free

On the other hand, some intuitions have simple proofs:
Proposition
For $n \geq 0, C \Sigma_{n}=C \Pi_{n}$.

## Duality for free

On the other hand, some intuitions have simple proofs:
Proposition
For $n \geq 0, C \Sigma_{n}=C \Pi_{n}$.
Proof.
Simply replace every sequent $\vec{p}, \Gamma \Rightarrow \Delta$ with $\vec{p}, \bar{\Gamma} \Rightarrow \bar{\Delta}$, where $\vec{p}$ exhausts all atomic formulae in the antecedent.

Summary of contribution

## Summary of contribution

Theorem
$C \Sigma_{n}=I \Sigma_{n+1}$, over $\Pi_{n+1}$ theorems.

## Summary of contribution

Theorem
$C \Sigma_{n}=I \Sigma_{n+1}$, over $\Pi_{n+1}$ theorems.
〇: by structural methods manipulating normal forms of inductive proofs.

## Summary of contribution

Theorem
$C \Sigma_{n}=I \Sigma_{n+1}$, over $\Pi_{n+1}$ theorems.
〇: by structural methods manipulating normal forms of inductive proofs.
$\subseteq$ : soundness argument can be formalised in conservative SO extensions.

## Summary of contribution

Theorem
$C \Sigma_{n}=I \Sigma_{n+1}$, over $\Pi_{n+1}$ theorems.
〇: by structural methods manipulating normal forms of inductive proofs.
$\subseteq$ : soundness argument can be formalised in conservative SO extensions.
Theorem
PA and CA proof size differs only elementarily.

## Summary of contribution

Theorem
$C \Sigma_{n}=I \Sigma_{n+1}$, over $\Pi_{n+1}$ theorems.
〇: by structural methods manipulating normal forms of inductive proofs.
$\subseteq$ : soundness argument can be formalised in conservative SO extensions.
Theorem
PA and CA proof size differs only elementarily.
Proof idea.
Soundness argument can be made uniform in PA. Relies on:

- Deterministic acceptance of branch automaton is arithmetical.
- Well-foundedness of only finite ordinals is needed for the argument.
- $\rightsquigarrow$ arithmetical approximation of non-deterministic acceptance.


## Outline

(1) Peano and Cyclic Arithmetic
(2) Summary of previous work and contributions
(3) From induction to cycles
(4) From cycles to induction
(5) Some further results
(6) Conclusions

Main lemma

## Main lemma

Lemma
Let $\pi$ be a $I \Pi_{n+1}$ proof, containing only $\Pi_{n+1}$ formulae, of

$$
\begin{equation*}
\Gamma, \forall x_{1} \cdot A_{1}, \ldots, \forall x_{l} \cdot A_{l} \Rightarrow \Delta, \forall y_{1} \cdot B_{1}, \ldots, \forall y_{m} \cdot B_{m} \tag{*}
\end{equation*}
$$

where $\Gamma, \Delta, A_{i}, B_{j}$ are $\Sigma_{n}$ and $\vec{x}, \vec{y}$ occur only in $\vec{A}, \vec{B}$ respectively.

## Main lemma

Lemma
Let $\pi$ be a $I \Pi_{n+1}$ proof, containing only $\Pi_{n+1}$ formulae, of

$$
\Gamma, \forall x_{1} . A_{1}, \ldots, \forall x_{l} \cdot A_{l} \Rightarrow \Delta, \forall y_{1} \cdot B_{1}, \ldots, \forall y_{m} \cdot B_{m}
$$

where $\Gamma, \Delta, A_{i}, B_{j}$ are $\Sigma_{n}$ and $\vec{x}, \vec{y}$ occur only in $\vec{A}, \vec{B}$ respectively.
Then there is a $C \Sigma_{n}$ derivation $\lceil\pi\rceil$ of the form:


Moreover, no free variables of $(\star)$ occur as eigenvariables in $\lceil\pi\rceil$.

## Translation of an induction step to a cyclic proof, idea

If $\pi$ extends proofs $\pi_{0}, \pi^{\prime}$ by an induction step,

$$
\text { ind } \frac{\Gamma, \forall \vec{x} \cdot \vec{A} \Rightarrow \Delta, \forall \vec{y} \cdot \vec{B}, \forall z \cdot C(0) \quad \Gamma, \forall \vec{x} \cdot \vec{A}, \forall z \cdot C(c) \Rightarrow \Delta, \forall \vec{y} \cdot \vec{B}, \forall z \cdot C(\mathrm{sc})}{\Gamma, \forall \vec{x} \cdot \vec{A} \Rightarrow \Delta, \forall \vec{y} \cdot \vec{B}, \forall x \cdot C(t)}
$$

## Translation of an induction step to a cyclic proof, idea

If $\pi$ extends proofs $\pi_{0}, \pi^{\prime}$ by an induction step,

$$
\text { ind } \frac{\Gamma, \forall \vec{x} \cdot \vec{A} \Rightarrow \Delta, \forall \vec{y} \cdot \vec{B}, \forall z \cdot C(0) \quad \Gamma, \forall \vec{x} \cdot \vec{A}, \forall z \cdot C(c) \Rightarrow \Delta, \forall \vec{y} \cdot \vec{B}, \forall z \cdot C(\mathrm{sc})}{\Gamma, \forall \vec{x} \cdot \vec{A} \Rightarrow \Delta, \forall \vec{y} \cdot \vec{B}, \forall x \cdot C(t)}
$$

we define $\lceil\pi\rceil$ to be the following cyclic proof:

$$
\begin{aligned}
& \text { sub } \frac{\Gamma \Rightarrow \Delta, \vec{B}, C(d)}{\Gamma \Rightarrow \Delta, \vec{B}, C(t)}
\end{aligned}
$$

## Outline

(1) Peano and Cyclic Arithmetic
(2) Summary of previous work and contributions
(3) From induction to cycles
(4) From cycles to induction
(5) Some further results
(6) Conclusions

Reverse mathematics of $\omega$-word automata

## Reverse mathematics of $\omega$-word automata

Reason about infinite words/sets in conservative SO extensions of FO arithmetic.
$\mathrm{RCA}_{\circ} \approx I \Sigma_{1} \approx$ primitive recursive arithmetic

## Reverse mathematics of $\omega$-word automata

Reason about infinite words/sets in conservative SO extensions of FO arithmetic.

$$
\mathrm{RCA}_{0} \approx I \Sigma_{1} \approx \text { primitive recursive arithmetic }
$$

For an appropriate formalisation of NBA complementation, we have:
Theorem (Kolodziejczyk, Michalewski, Pradic \& Skrzypczak '16)

$$
\begin{equation*}
\mathrm{RCA}_{0}+\Sigma_{2}^{0}-\text { IND } \vdash \forall N B A \mathcal{A} . \forall X .\left(X \in \mathcal{L}\left(\mathcal{A}^{c}\right) \equiv X \notin \mathcal{L}(\mathcal{A})\right) \tag{1}
\end{equation*}
$$

## Reverse mathematics of $\omega$-word automata

Reason about infinite words/sets in conservative SO extensions of FO arithmetic.

$$
\mathrm{RCA}_{0} \approx I \Sigma_{1} \approx \text { primitive recursive arithmetic }
$$

For an appropriate formalisation of NBA complementation, we have:
Theorem (Kolodziejczyk, Michalewski, Pradic \& Skrzypczak '16)

$$
\begin{equation*}
\mathrm{RCA}_{0}+\Sigma_{2}^{0}-\mathrm{IND} \vdash \forall \mathrm{NBA} \mathcal{A} . \forall X .\left(X \in \mathcal{L}\left(\mathcal{A}^{c}\right) \equiv X \notin \mathcal{L}(\mathcal{A})\right) \tag{1}
\end{equation*}
$$

Moreover, for each NBA $\mathcal{A}$, we have:

$$
\begin{equation*}
R C A_{0} \vdash \forall X .\left(X \in \mathcal{L}\left(\mathcal{A}^{c}\right) \equiv X \notin \mathcal{L}(\mathcal{A})\right) \tag{2}
\end{equation*}
$$

## Reverse mathematics of $\omega$-word automata

Reason about infinite words/sets in conservative SO extensions of FO arithmetic.

$$
\mathrm{RCA}_{0} \approx I \Sigma_{1} \approx \text { primitive recursive arithmetic }
$$

For an appropriate formalisation of NBA complementation, we have:
Theorem (Kolodziejczyk, Michalewski, Pradic \& Skrzypczak '16)

$$
\begin{equation*}
\mathrm{RCA}_{0}+\Sigma_{2}^{0}-\mathrm{IND} \vdash \forall \mathrm{NBA} \mathcal{A} . \forall X .\left(X \in \mathcal{L}\left(\mathcal{A}^{c}\right) \equiv X \notin \mathcal{L}(\mathcal{A})\right) \tag{1}
\end{equation*}
$$

Moreover, for each NBA $\mathcal{A}$, we have:

$$
\begin{equation*}
R C A_{0} \vdash \forall X .\left(X \in \mathcal{L}\left(\mathcal{A}^{c}\right) \equiv X \notin \mathcal{L}(\mathcal{A})\right) \tag{2}
\end{equation*}
$$

NB: (2) is implicit in that work. It is not trivial!

## From cycles to induction

## From cycles to induction

Write $\operatorname{ArAcc}\left(X, \mathcal{A}_{2}\right)$ for:
"eventually, there are runs of $X$ on $\mathcal{A}_{2}$ hitting final states arbitrarily often"

## From cycles to induction

Write $\operatorname{ArAcc}\left(X, \mathcal{A}_{2}\right)$ for:
"eventually, there are runs of $X$ on $\mathcal{A}_{2}$ hitting final states arbitrarily often"
Theorem
$I \Sigma_{1}(X)+$ " $\mathcal{A}_{2}$ has a complement" proves:

$$
\forall D B A \mathcal{A}_{1} .\left(" \mathcal{A}_{1} \subseteq \mathcal{A}_{2} " \wedge X \in \mathcal{L}\left(\mathcal{A}_{1}\right)\right) \supset \operatorname{ArAcc}\left(X, \mathcal{A}_{2}\right)
$$

## From cycles to induction

Write $\operatorname{ArAcc}\left(X, \mathcal{A}_{2}\right)$ for:
"eventually, there are runs of $X$ on $\mathcal{A}_{2}$ hitting final states arbitrarily often"
Theorem
$I \Sigma_{1}(X)+$ " $\mathcal{A}_{2}$ has a complement" proves:

$$
\forall D B A \mathcal{A}_{1} .\left(" \mathcal{A}_{1} \subseteq \mathcal{A}_{2} " \wedge X \in \mathcal{L}\left(\mathcal{A}_{1}\right)\right) \supset \operatorname{ArAcc}\left(X, \mathcal{A}_{2}\right)
$$

- $X \in \mathcal{L}\left(\mathcal{A}_{1}\right)$ is arithmetical due to determinism.
- (Emptiness, unions and intersections of NBA formalisable in RCA ${ }_{\circ}$.)


## From cycles to induction

Write $\operatorname{ArAcc}\left(X, \mathcal{A}_{2}\right)$ for:
"eventually, there are runs of $X$ on $\mathcal{A}_{2}$ hitting final states arbitrarily often"
Theorem
$I \Sigma_{1}(X)+$ " $\mathcal{A}_{2}$ has a complement" proves:

$$
\forall D B A \mathcal{A}_{1} .\left(" \mathcal{A}_{1} \subseteq \mathcal{A}_{2} " \wedge X \in \mathcal{L}\left(\mathcal{A}_{1}\right)\right) \supset \operatorname{ArAcc}\left(X, \mathcal{A}_{2}\right)
$$

- $X \in \mathcal{L}\left(\mathcal{A}_{1}\right)$ is arithmetical due to determinism.
- (Emptiness, unions and intersections of NBA formalisable in RCA ${ }_{\circ}$.)

The soundness argument of $C \Sigma_{n}$ constructs a $\Delta_{n+1}$-definable invalid branch,

## From cycles to induction

Write $\operatorname{ArAcc}\left(X, \mathcal{A}_{2}\right)$ for:
"eventually, there are runs of $X$ on $\mathcal{A}_{2}$ hitting final states arbitrarily often"
Theorem
$I \Sigma_{1}(X)+$ " $\mathcal{A}_{2}$ has a complement" proves:

$$
\forall D B A \mathcal{A}_{1} .\left(" \mathcal{A}_{1} \subseteq \mathcal{A}_{2} " \wedge X \in \mathcal{L}\left(\mathcal{A}_{1}\right)\right) \supset \operatorname{ArAcc}\left(X, \mathcal{A}_{2}\right)
$$

- $X \in \mathcal{L}\left(\mathcal{A}_{1}\right)$ is arithmetical due to determinism.
- (Emptiness, unions and intersections of NBA formalisable in RCA ${ }_{\circ}$.)

The soundness argument of $C \Sigma_{n}$ constructs a $\Delta_{n+1}$-definable invalid branch, so:
Corollary
(1) PA elementarily simulates CA.
(2) $I \Sigma_{n+1} \supseteq C \Sigma_{n}$.

## Outline

(1) Peano and Cyclic Arithmetic
(2) Summary of previous work and contributions
(3) From induction to cycles
(4) From cycles to induction
(5) Some further results
(6) Conclusions

## Computational aspects of CA

## Provably recursive functions of $C \Delta_{0}$

- For $n \geq 1$, the provably recursive functions of $C \Sigma_{n}$ are just those of $I \Sigma_{n+1}$.


## Computational aspects of CA

## Provably recursive functions of $C \Delta_{\text {。 }}$

- For $n \geq 1$, the provably recursive functions of $C \Sigma_{n}$ are just those of $I \Sigma_{n+1}$.
- However $C \Delta_{0}$ is $\Pi_{1}$-axiomatised, so by Parikh's theorem we have:

Corollary
The provably recursive functions of $C \Delta_{0}$ are just those of $I \Delta_{0}$, i.e. the linear-time hierarchy.

## Computational aspects of CA

## Provably recursive functions of $C \Delta_{0}$

- For $n \geq 1$, the provably recursive functions of $C \Sigma_{n}$ are just those of $I \Sigma_{n+1}$.
- However $C \Delta_{0}$ is $\Pi_{1}$-axiomatised, so by Parikh's theorem we have:

Corollary
The provably recursive functions of $C \Delta_{0}$ are just those of $I \Delta_{0}$, i.e. the linear-time hierarchy.

Failure of cut-admissibility

## Computational aspects of CA

## Provably recursive functions of $C \Delta_{0}$

- For $n \geq 1$, the provably recursive functions of $C \Sigma_{n}$ are just those of $I \Sigma_{n+1}$.
- However $C \Delta_{0}$ is $\Pi_{1}$-axiomatised, so by Parikh's theorem we have:

Corollary
The provably recursive functions of $C \Delta_{0}$ are just those of $I \Delta_{0}$, i.e. the linear-time hierarchy.

## Failure of cut-admissibility

Corollary
For $n \geq 1$, the class of CA proofs with only $\Sigma_{n-1}$ cuts is not complete for $C \Sigma_{n}$.

## Computational aspects of CA

## Provably recursive functions of $C \Delta_{0}$

- For $n \geq 1$, the provably recursive functions of $C \Sigma_{n}$ are just those of $I \Sigma_{n+1}$.
- However $C \Delta_{0}$ is $\Pi_{1}$-axiomatised, so by Parikh's theorem we have:

Corollary
The provably recursive functions of $C \Delta_{0}$ are just those of $I \Delta_{0}$, i.e. the linear-time hierarchy.

## Failure of cut-admissibility

Corollary
For $n \geq 1$, the class of CA proofs with only $\Sigma_{n-1}$ cuts is not complete for $C \Sigma_{n}$.
Proof.

- $I \Sigma_{n+1} \vdash \operatorname{Con}_{I \Sigma_{n}}$ so $C \Sigma_{n} \vdash \operatorname{Con}_{I \Sigma_{n}}$ by $\Pi_{n+1}$-conservativity.


## Computational aspects of CA

## Provably recursive functions of $C \Delta_{0}$

- For $n \geq 1$, the provably recursive functions of $C \Sigma_{n}$ are just those of $I \Sigma_{n+1}$.
- However $C \Delta_{0}$ is $\Pi_{1}$-axiomatised, so by Parikh's theorem we have:


## Corollary

The provably recursive functions of $C \Delta_{0}$ are just those of $I \Delta_{0}$, i.e. the linear-time hierarchy.

## Failure of cut-admissibility

Corollary
For $n \geq 1$, the class of CA proofs with only $\Sigma_{n-1}$ cuts is not complete for $C \Sigma_{n}$.
Proof.

- $I \Sigma_{n+1} \vdash \operatorname{Con}_{I \Sigma_{n}}$ so $C \Sigma_{n} \vdash \operatorname{Con}_{I \Sigma_{n}}$ by $\Pi_{n+1}$-conservativity.
- On the other hand, $C \Sigma_{n-1} \nvdash \operatorname{Con}_{I \Sigma_{n}}$ since otherwise $I \Sigma_{n} \vdash \operatorname{Con}_{I \Sigma_{n}}$.

Metalogical aspects of CA

Reflection and consistency

## Metalogical aspects of CA

## Reflection and consistency

Rephrasing our results in terms of logical strength, we have:
Corollary
For $n \geq 0, I \Sigma_{n+2} \vdash \Pi_{n+1}-$ Rfn $_{C \Sigma_{n}}$.

## Metalogical aspects of CA

## Reflection and consistency

Rephrasing our results in terms of logical strength, we have:
Corollary
For $n \geq 0, I \Sigma_{n+2} \vdash \Pi_{n+1}-$ Rfn $_{C \Sigma_{n}}$. In particular we have $I \Sigma_{n+2} \vdash \operatorname{Con}_{C \Sigma_{n}}$.
Incompleteness

## Metalogical aspects of CA

## Reflection and consistency

Rephrasing our results in terms of logical strength, we have:
Corollary
For $n \geq 0, I \Sigma_{n+2} \vdash \Pi_{n+1}-\operatorname{Rfn}_{C \Sigma_{n}}$. In particular we have $I \Sigma_{n+2} \vdash \operatorname{Con}_{C \Sigma_{n}}$.

## Incompleteness

Unsurprisingly, we have Gödel incompleteness for all fragments $C \Sigma_{n}$.

## Metalogical aspects of CA

## Reflection and consistency

Rephrasing our results in terms of logical strength, we have:
Corollary
For $n \geq 0, I \Sigma_{n+2} \vdash \Pi_{n+1}-\operatorname{Rfn}_{C \Sigma_{n}}$. In particular we have $I \Sigma_{n+2} \vdash \operatorname{Con}_{C \Sigma_{n}}$.

## Incompleteness

Unsurprisingly, we have Gödel incompleteness for all fragments $C \Sigma_{n}$.
In particular, we have:
Corollary
For $n \geq 0, I \Sigma_{n+1} \nvdash \operatorname{Con}_{C \Sigma_{n}}$.

## Metalogical aspects of CA

## Reflection and consistency

Rephrasing our results in terms of logical strength, we have:
Corollary
For $n \geq 0, I \Sigma_{n+2} \vdash \Pi_{n+1}-\operatorname{Rfn}_{C \Sigma_{n}}$. In particular we have $I \Sigma_{n+2} \vdash \operatorname{Con}_{C \Sigma_{n}}$.

## Incompleteness

Unsurprisingly, we have Gödel incompleteness for all fragments $C \Sigma_{n}$.
In particular, we have:
Corollary
For $n \geq 0, I \Sigma_{n+1} \nvdash \operatorname{Con}_{C \Sigma_{n}}$.
Proof.
Otherwise $C \Sigma_{n} \vdash \operatorname{Con}_{C \Sigma_{n}}$ by $\Pi_{n+1}$-conservativity.

Reverse mathematics of McNaughton's theorem

## Reverse mathematics of McNaughton's theorem

In fact, there is a curious consequence for $\omega$-automaton theory.

## Reverse mathematics of McNaughton's theorem

In fact, there is a curious consequence for $\omega$-automaton theory.
Theorem
A natural formulation of McNaughton's theorem, that every NBA has an equivalent deterministic parity automaton, is not provable in RCA。.

## Reverse mathematics of McNaughton's theorem

In fact, there is a curious consequence for $\omega$-automaton theory.
Theorem
A natural formulation of McNaughton's theorem, that every NBA has an equivalent deterministic parity automaton, is not provable in RCA。.

Proof idea.

- If $\mathcal{A}_{1}$ is a DBA, we can check $\mathcal{L}\left(\mathcal{A}_{1}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{2}\right)$ by complementing $\mathcal{A}_{1}$ in $\mathrm{RCA} \mathrm{A}_{\circ}$ and checking for universality of $\mathcal{A}_{1}^{c} \cup \mathcal{A}_{2}$.


## Reverse mathematics of McNaughton's theorem

In fact, there is a curious consequence for $\omega$-automaton theory.
Theorem
A natural formulation of McNaughton's theorem, that every NBA has an equivalent deterministic parity automaton, is not provable in $\mathrm{RCA}_{\circ}$.

## Proof idea.

- If $\mathcal{A}_{1}$ is a DBA, we can check $\mathcal{L}\left(\mathcal{A}_{1}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{2}\right)$ by complementing $\mathcal{A}_{1}$ in RCA and checking for universality of $\mathcal{A}_{1}^{c} \cup \mathcal{A}_{2}$.
- (Given McNaughton, we may check universality already in $\mathrm{RCA}_{\circ}$ ).


## Reverse mathematics of McNaughton's theorem

In fact, there is a curious consequence for $\omega$-automaton theory.
Theorem
A natural formulation of McNaughton's theorem, that every NBA has an equivalent deterministic parity automaton, is not provable in $\mathrm{RCA}_{0}$.

## Proof idea.

- If $\mathcal{A}_{1}$ is a DBA, we can check $\mathcal{L}\left(\mathcal{A}_{1}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{2}\right)$ by complementing $\mathcal{A}_{1}$ in RCA and checking for universality of $\mathcal{A}_{1}^{c} \cup \mathcal{A}_{2}$.
- (Given McNaughton, we may check universality already in $\mathrm{RCA}_{0}$ ).
- This allows us to formalise, say, the soundness of $C \Delta_{0}$ already in $I \Sigma_{1}$, contradicting Gödel's second incompletess result for $C \Delta_{0}$.


## Reverse mathematics of McNaughton's theorem

In fact, there is a curious consequence for $\omega$-automaton theory.
Theorem
A natural formulation of McNaughton's theorem, that every NBA has an equivalent deterministic parity automaton, is not provable in RCA。.

## Proof idea.

- If $\mathcal{A}_{1}$ is a DBA, we can check $\mathcal{L}\left(\mathcal{A}_{1}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{2}\right)$ by complementing $\mathcal{A}_{1}$ in $\mathrm{RCA} \mathrm{A}_{0}$ and checking for universality of $\mathcal{A}_{1}^{c} \cup \mathcal{A}_{2}$.
- (Given McNaughton, we may check universality already in RCA ${ }_{\circ}$ ).
- This allows us to formalise, say, the soundness of $C \Delta_{0}$ already in $I \Sigma_{1}$, contradicting Gödel's second incompletess result for $C \Delta_{0}$.

This was not known before!

## Outline

(1) Peano and Cyclic Arithmetic
(2) Summary of previous work and contributions
(3) From induction to cycles
(4) From cycles to induction
(5) Some further results
(6) Conclusions

Summary and open questions

## Summary and open questions

Optimal logical complexity result. In fact:
Corollary
$C \Sigma_{n}$ is precisley the $\Pi_{n+1}$ consequences of $I \Sigma_{n+1}$.

## Summary and open questions

Optimal logical complexity result. In fact:
Corollary
$C \Sigma_{n}$ is precisley the $\Pi_{n+1}$ consequences of $I \Sigma_{n+1}$.
Proof complexity differs only elementarily. In fact:
Corollary
PA exponentially simulates CA. This is optimal, unless there is a more efficient way to check cyclic proof soundness.

## Summary and open questions

Optimal logical complexity result. In fact:
Corollary
$C \Sigma_{n}$ is precisley the $\Pi_{n+1}$ consequences of $I \Sigma_{n+1}$.
Proof complexity differs only elementarily. In fact:
Corollary
PA exponentially simulates CA. This is optimal, unless there is a more efficient way to check cyclic proof soundness.

Question
What is the logical strength of McNaughton's theorem, in general?

## Summary and open questions

Optimal logical complexity result. In fact:
Corollary
$C \Sigma_{n}$ is precisley the $\Pi_{n+1}$ consequences of $I \Sigma_{n+1}$.
Proof complexity differs only elementarily. In fact:
Corollary
PA exponentially simulates CA. This is optimal, unless there is a more efficient way to check cyclic proof soundness.

Question
What is the logical strength of McNaughton's theorem, in general?
Question
What about computational interpretations and constructivity?

## Summary and open questions

Optimal logical complexity result. In fact:
Corollary
$C \Sigma_{n}$ is precisley the $\Pi_{n+1}$ consequences of $I \Sigma_{n+1}$.
Proof complexity differs only elementarily. In fact:
Corollary
PA exponentially simulates CA. This is optimal, unless there is a more efficient way to check cyclic proof soundness.

Question
What is the logical strength of McNaughton's theorem, in general?
Question
What about computational interpretations and constructivity?

Thank you.


[^0]:    Definition
    A cyclic proof is a $\infty$-proof with only finitely many distinct subtrees.

