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1 The Language
We work in Church’s simply typed _-calculus, wherein each formal expression falls
into one of infinitely many disjoint syntactic categories, called types. The types are
built recursively from the two base types 4 and C by the operation of putting a →
between them. Intuitively, type 4 is the type of names, C of sentences, and f → g

the type of things that yield an expression of type g when applied to an expression
of type f.

The formal language also includes variables of all types. For example, “(-H)”
will be a well-formed expression of type g when “-” is of type (f → g) and “H”
of type f. Variables, like other expressions, have their types set in stone. Due to a
shortage of letters, the official variables are letters with superscript designations of
their type. So we have variables like “- (C→C)” and “HC” and so on. The superscript
will be suppressed for brevity when the type in question either doesn’t matter or can
be figured out from context.

Variables are bound using _-abstraction. When an expression " of type g
contains an unbound variable, “G” say of type f, then (_G.") is an expression of
type (f → g). That is, if = is also of type f, then “(_G.")” can be applied to =
to get the well-formed expression “((_G.")=)” of type g. Intuitively, “((_G.")=)”
means what " would have meant if every occurrence of “G” that is not bound in
" were replaced with an occurrence of =. _-abstraction is the only way of binding
variables in the language. Quantifiers, which are traditionally used to bind variables
in first-order logic, are instead treated as yet more expressions in the way we treated
the English “every” above. For example, the first-order universal quantifier is treated
as an expression of type ((4 → C) → C). That is, it takes in a predicate and spits out
a sentence, which intuitively means that the property expressed by the predicate is
universal.
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The logical primitives of the language are the following:

• For each type f a quantifier expression ∀f of type ((f → C) → C);

• A connective,→, of type (C → (C → C)).

∀4 is to be understood as the familiar first-order universal quantifier. For other types,
the meaning of ∀f is to be pinned down by its logical role, which we will stipulate
later is exactly analogous to that of ∀4. The connective → is to mean material
implication.

This completes our description of the formal language. However, we will help
ourselves to some abbreviations that help with readability. For one thing, we will
omit brackets where we can. Rightwards arrows are always taken to associate
rightwards: so that 4 → 4 → 4 → C is to abbreviate (4 → (4 → (4 → C))),
but (4 → 4) → 4 → C abbreviates ((4 → 4) → (4 → C)). Application will
always associate leftwards: so that “-HI” will abbreviate “((-H)I)” rather than,
say, “(- (HI))”. That is, “-HI” is the expression that results from first applying “-”
to “H” and then the result, “(-H)”, to “I”.

Next, wewill omit repeated_s, so that complex_-abstractions like “(_G.(_. .(_I..GI)))”
will be abbreviated as “_G.I..GI”. When a universal quantifier of any type precedes
a _, we omit the _, so that “∀G(.G)” abbreviates “∀_G..G”. Moreover, we freely
write many universal quantifiers as one, using a period to separate the quantifier
from the formula it is prepended to: “∀G.I.(.GI)” abbreviates “∀G∀.∀I(.GI)”.

We will also write relations in infix notation where this helps readability. For
example, “? → @” will be written instead of the cumbersome “→?@”.

Finally, we will use the only primitive truth-functional connective, “→”, along
with the quantifier “∀C”, to define the other familiar truth-functional connectives of
conjunction, negation, and so on. Thus, we will employ the following abbreviations:

• “⊥” abbreviates “∀C ?(?)”;

• “¬” abbreviates “_?.(? → ⊥)”;

• “∨” abbreviates “_?@.(¬? → @)”;

• “∧” abbreviates “_?@.¬(¬? ∨ ¬@)”;

• “↔” abbreviates “_?@.((? → @) ∧ (@ → ?))”;

• “∃f” abbreviates “_-.¬∀fH(¬-H)”.
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2 The Logic

2.1 Classical Higher-Order Logic
Logics are here identified with the set of (type C, possibly open) formulae provable
in the logic. We also use theory interchangeably with logic.

As usual, our logic will be described in terms of axioms and rules of inference.
These characterise the logic recursively: axioms are the things we start with, and
rules of inference are some closure conditions. The logic is taken to be the least set
of formulae that contains the axioms and is closed under the rules.

Classical higher-order logic is a minimal logic that we will assume to be true in
what follows. Roughly, classical higher-order logic is the smallest (that is, weakest)
logic that ensures that

• The truth-functional connectives work as expected;

• For each type f, the quantifier “∀f” obeys versions of the familiar laws of
universal instantiation and universal generalisation;

• Each expression of the form “_G.�G” is intersubstitutable with “�” ([-
equivalence);

• The application of a _-expression, “(_G.")=”, is intersubstitutable with
“" [=/G]”, which is the expression " but with each unbound occurrence
of G replaced with an = (V-equivalence).

There are infinitely many different types, and classical higher-order logic says
something about each of them, so classical higher-order logic requires infinitely
many axioms and rules. Our axioms will be the following:

Propositional Calculus The standard axioms for classical propositional logic for
the material conditional “→” and the other, defined, truth-functional connec-
tives.

Universal Instantiation An axiom of the following form for every type f, and
expressions " and = of types (f → C) and f respectively (including variable
symbols):

(∀") → "=.

U-Equivalence An axiom of the form q ↔ k, whenever q and k differ only by a
change of variables.
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[-Equivalence An axiom of the form q↔ k, whenever

(a) q and k are (grammatical) sentences that differ only by the substitution
of " and “_G."G”, for " of any functional type (otherwise " cannot
grammatically be applied to the variable), and

(b) There are no unbound occurrences of G in " .

V-Equivalence An axiom of the form q↔ k, whenever

(a) q and k are sentences that differ only by the substitution of “(_G.")=”
and " [=/G], again for any expressions " and = of types for which
“(_G.")=” is grammatical, and

(b) No variable that is unbound in the occurrence of = in either expression
becomes bound in the other.

The rules of inference are as follows:

Modus Ponens From q and q→ k, infer k.

Universal Generalisation For each type f: from q → k, where G is a variable of
type f that has no unbound occurrences in q, infer q→ ∀fGk.

2.2 Classicism
Classicism adds the following axiom schema:

Classical Equivalence q = k, and _G1 . . . G=.q = _G1 . . . G=.k for any string of
variables G1 . . . G=, whenever q ↔ k is a theorem of classical higher-order
logic.

2.3 The Axiom of Choice
Axiom of Choice (AC) ∃ 5∀- ((∃H-H) → - ( 5 (-)).

Here is an equivalent axiom schema:

Hilbert-Ackermann Equivalence ∀'(∀G∃H'GH ↔ ∃ 5∀G'G 5 (G)).
We will assume a stronger schema:

Necessary Axiom of Choice �AC > = ∃ 5∀- ((∃H-H) → - ( 5 (-)).
Which is equivalent to the following plausible schema about propositional gran-

ularity:

Hilbert-Ackermann Identity ∀'((∀G∃H'GH) = ∃ 5∀G'G 5 (G)).
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3 Necessity, Identity, and Distinctness
Let � abbreviate = >. Classicism ensures that � behaves logically like a notion of
necessity:

Theorem 1 (C). � has an S4 modal logic, and obeys the necessity of identity and
the converse Barcan formula.

Proof. See Bacon 2018. �

Theorem 2 (C). � has an S5 modal logic just in case every pair of distinct propo-
sitions is necessarily distinct.

∀?(¬�? → �¬�?) ↔ ∀?@((? ≠ @) → �(? ≠ @))

Proof. If distinct propositions are necessarily distinct, then in particular ? ≠ > is
necessary when true. But ? ≠ > is just ¬�?, so ¬�? is necessary when true. �

Theorem 3 (C + AC). Distinct things are necessarily distinct.

Proof. For a fixed 0 of any type, define the relation ' := _G?.(G = 0 ∧ ? =

>) ∨ (G ≠ 0 ∧ ? = ⊥). Clearly, ' relates everything to something, so by the
Hilbert-Ackermann identity, there is a function 5 that relates every G to something
it is '-related to. So if 0 ≠ 1, then 5 0 = > and 5 1 = ⊥. As a result, if 0 ≠ 1, then
(0 = 1) = (0 = 1 ∧ ( 5 0 = 5 1)) = (0 = 1 ∧ (> = ⊥)) = ⊥. So 0 ≠ 1 is necessary
when true. �

4 Classes and Extensions
We define an extension at type f1 → · · · → f= → C as a function that maps
everything to either > or ⊥:

Extf1→···→f=→C := _-.∀H1 . . . H=.(�-H1 . . . H= ∨ �¬-H1 . . . H=)

The theory of extensions is given by

Extension Extensionality Coextensional extensions are identical.

∀-..((Ext - ∧ Ext. ) → ∀I1 . . . I=.(-I1 . . . I= ↔ .I1 . . . I=))

Extension Comprehension Every property and relation has an extension.

∀-∃. (Ext. ∧ ∀I1 . . . I=.(-I1 . . . I= ↔ .I1 . . . I=))
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Extension Persistence Extensions have their instances necessarily.

∀-.(Ext - → ∀H1 . . . H=.(-H1 . . . H= → �-H1 . . . H=))

Extension Inextensibility If everything in an extension is necessarily some way,
then necessarily everything in that extension is that way.

∀- (Ext - → ∀. (∀I1 . . . I= (-I1 . . . I= → .I1 . . . I=)
→ �∀I1 . . . I= (-I1 . . . I= → .I1 . . . I=)))

Theorem 4. C+AC entails the theory of extensions (i.e., every theorem of the theory
of extensions is a theorem of C + AC).

5 Actuality and Possible Worlds
Let an actuality operator be a C → C operator that applies to all and only the truths,
and applies necessarily to everything it applies to.

Theorem 5 (C + AC). There is an actuality operator.

Proof sketch. The extension of truth (_?.?) is an actuality operator. �

We let a possible world be a maximally specific possible proposition. That is,

World := _?.∀@(�(? → @) ∨ �(? → ¬@))

For example, if @ is an actuality operator, then World∀?(@? → ?).

Atomicity Possibility is coextensive with being true at some world.

∀?(^? ↔ ∃F(WorldF ∧ �(F → ?))

Theorem 6 (C + �AC). Atomicity is true.

Proof. By necessitating �AC we get that there is necessarily an actuality operator.
Thus it is necessary that there is a true world, or

�∃F(F ∧WorldF)

Therefore, if ^?, then

^∃F(? ∧ F ∧WorldF)

6



and so ^∃F(WorldF ∧ �(? → F)). Since � has an S5 modal logic in C + �AC,
this yields Atomicity. �

This proof is the same as that of Gallin 1975, so in fact all we needed was S5 for
� and the necessitated theory of extensions. Gallin also shows the opposite directon:
Classicism plus S5 plus Atomicity gives you the necessitated theory of extensions.

6 Foundations of Mathematics

6.1 The Necessity of Logic
Theorem 7 (C+�AC). �q∨�¬q, where “q” is a closed sentence with only logical
vocabulary.

Proof sketch. Showing �q ∨ �¬i is the same as showing that q = cq for any
permutation of propositions given by a permutation of possible worlds.

Where cC is such a permutation of propositions and c4 a permutation of individ-
uals, we define permutations of the higher types recursively as follows:

cf→g := _-f→gHf .cg (-c−1f H)

This gives us the identity c(-H) = c(-)c(H).
We then show that c∀ = ∀, c→ =→, and c" = " for any combinator " . If

q has only logical vocabulary, it can be written in the form (("01) . . . )0=), where
" is a combinator and 01 through 0= are logical constants. Therefore, c(q) =
(c(")c(01)) . . . )c(0=)), which by the previous fact is just q, as required. �

6.2 Consistency Implies Truth
Corollary 8. (^∃G1 . . . G=.q) → ∃G1 . . . G=.q, where “q” is purely logical.

Definition 1 (First-order formulae). The first-order formulae relative to some finite
set of variables Σ of types 4 → C, 4 → 4 → C and so on, are the least set of
formulae that contain all the atomic sentences of the form G4 = H4, and -H1 . . . H=
for - ∈ Σ that is also closed under Boolean combinations of formulae, and first-order
quantification.

Definition 2 (Interpretation/Truth). An interpretation of a finite set of variables Σ
of type 4 → C, 4 → 4 → C, and so on, consists of an 4 → C extension specifying the
domain of quantification, and a function specifying for each variable an extension
of the appropriate type. Truth on an interpretation is then defined in the Tarskian
way.
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Theorem9 (C+�AC+Infinity). If some class of first-order sentences is syntactically
consistent, then it is true on some interpretation.

6.3 Equivalences Between C + �AC and Set Theory
Work in set theory. Given a set of worlds, and a set of individuals�4, we can define
a set of propositions �C by taking the powerset of worlds, a set of properties �4→C

by taking the set of functions from �4 to �C , and so on. Universal quantification
over individuals can be defined as the function from properties to propositions that
maps an 5 ∈ �4→C to {F ∈ , : ∀G ∈ �4 (F ∈ 5 (G))}, and so on for other types
of quantification. In this way, we can translate every formula of the higher-order
language to a sentence in the language of set theory with , and �4 free, call this
i†.

This translation is of metamathematical interest to higher-order logicians. In-
formal sentences about functions and such can be formalised in set theory or in
higher-order logic. If an informal sentence is formalisable in higher-order logic as
i, then that sentence ought to be formalised as i†, with, and �4 taken to denote
to the “sets” of worlds and of “individuals” respectively. Therefore, if set theorists
accept a sentence of the form ∀,∀�4i†, we can read off of this a corresponding
commitment in the higher-order language. This notion of equivalence can therefore
be used to see the differences in commitments between C + �AC and various set
theories. On this point we have a quick result and a conjecture which we are fairly
confident in.

Theorem 10. C + �AC is strictly weaker than the theory {i : ZFC ` ∀,∀�4i†}.

Proof. ZFC proves that C + �AC is consistent, and therefore proves that for any,
and �4, there is no code for the inconsistency of C+�AC in the higher-order natural
numbers. But C + �AC doesn’t prove this by the incompleteness theorem. �

On the other hand, let ZDQB be ZFC minus the axiom of replacement, and with
the axiom schema of separation replaced with the weaker schema:

Bounded Separation

∀G∃H(∀I(I ∈ H ↔ (I ∈ G ∧ i)))

where “i” is any formula with H not free, and with all quantifiers restricted to
members of some set or other.

Conjecture 1. C + �AC = {i : ZDQB ` ∀,∀�4i†}.
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Proof idea. If ZDQB 6` ∀,∀�4i†, then there is a model where ¬i† holds of some
, and �4. We define a class model of C + �AC in this model by interpreting
quantification over type C and 4 as quantification restricted to, and to �4, and over
type f → g as quantification restricted to (set-theoretic) functions from �f to �g.
The closure conditions on models of set theory ensure that this forms a model of
C + �AC where ¬i holds.

If C + �AC 6` i, then there is a Henkin model where ¬i. We therefore have a
set , and a set �4 such that quantification over type f → g is in general treated
as restricted quantification over functions 5 : �f → �g. The closure conditions
on this model guarantee that these sets form part of a model of ZDQB where ¬i†
holds. �

7 Choice and Plenitude
Bacon and Dorr have considered a weakening of choice:

Plenitude Every functional =-ary relation specifies a function.

∀- ((∀H1 . . . H=−1∃!H=-H1 . . . H=) → ∃ 5∀H1 . . . H=−1-H1 . . . H=−1 5 (H1 . . . H=−1))

By a result in Gallin 1975 (Thm. 11.5), Plenitude is equivalent to the theory of
extensions in Classicism. Choice strengthens Plenitude by the following schema:

Relational Choice Every functional =-ary relation has a functional subrelation:

∀-∃.∀I1 . . . I= ((.I1 . . . I= → -I1 . . . I=)
∧ (∃I′.-I1 . . . I=−1I′↔ ∃!I′.. I1 . . . I=−1I′))

Which is equivalent to the global wellordering schema:

Global Wellordering There is a wellordering of the things of type f.

Theorem 11. Relational Choice and Global Wellordering are equivalent in Classi-
cal HOL, C + AC = C + Plenitude + Rel. Choice, and C + �AC = C + �Plenitude +
Rel. Choice.
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